A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis.
نویسندگان
چکیده
A nanoreplica molding process has been used to produce polymer microfluidic channels, with integrated label-free photonic crystal biosensors as the bottom surface of the channels. Multiple flow channels are gathered in parallel so that an imaging detection instrument may simultaneously monitor the binding kinetics of many biomolecular interactions. In this work, the flow channel pattern has been adapted to a 96-well microplate format in which, for each 12-element row of the microplate, a single well serves as a common access port for 11 flow channels that are connected to separate microplate wells. Application of pneumatic pressure or suction to the common well serves to drive forward or backward flow to the channels. The system is demonstrated by measuring the kinetic binding interaction of protein A with IgG molecules of high, medium, and low affinity. The approach offers a means for minimizing the volume of reagent required to functionalize the biosensor surface, while retaining compatibility with the microplate assay fluid-handling methods that are most commonly used in biological research.
منابع مشابه
Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...
متن کاملSingle-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels.
A method for simultaneously integrating label-free photonic crystal biosensor technology into microfluidic channels by a single-step replica molding process is presented. By fabricating both the sub-micron features of the photonic crystal sensor structure and the >10 microm features of a flow channel network in one step at room temperature on a plastic substrate, the sensors are automatically s...
متن کاملPhotonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays.
Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any ...
متن کاملLabel-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy.
The parallel reflectometric interference spectroscopy is presented as a label-free optical detection method. A new setup was adapted to accommodate sample carriers in a 96-well microplate. It allows for the first time simultaneous plate imaging by a CCD camera for the parallel detection of specific biomolecular interaction in the microplate wells at heterogeneous phase using direct optical moni...
متن کاملBiosensing microsystem platform based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers
We have achieved the design, fabrication and packaging of microfluidic networks with photonic sensors for novel labon-chip platforms which incorporate the on-chip biosensing detection. As sensors, we used an integrated Mach-Zehnder interferometer (MZI) based on TIR waveguides (Si/SiO2/Si3N4) of micro/nanodimensions for evanescent field detection of biomolecular interactions onto the sensing are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2007